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One of the essential components of an oil reservoir simulator is an efficient technique to 
solve the systems of algebraic equations arising from discretisation of the governing partial 
differential equations. This paper describes the development of a robust and efftcient multi- 
grid solution algorithm and its implementation for solving typical problems encountered in 
the modelling of petroleum reservoirs. The method ts used to compute results for two- and 
three-dimensional cases, involving in the region of up to 5000 grid-blocks. A comparison in 
terms of CRAY CPU time is provided between different multi-grid smoothing strategies 
employed by the algorithm. R 1985 Academic Press. Inc. 

1. INTRODUCTION 

The purpose of this paper is to describe the development and application of a 
selected multi-grid method to solve the nonseparable diffusion equation defined in 
up to three dimensions. This type of equation plays a central role in the theory of 
flow through porous media and provides the basis for setting up the governing par- 
tial differential equations of oil reservoir simulation. Allowing for discretisation in 
time, the diffusion equation at each time step may be written compactly as a self- 
adjoint boundary value problem, 

V.KVu= F. (1.1) 

Concerning notation, K is proportional to the permeability tensor, u is the depen- 
dent variable, in this case pressure, and F a functional term evaluated at the 
previous time step. The problem is to solve for u implicitly throughout the reservoir 
domain s;! subject to prescribed boundary conditions (usually no-flow Neumann 
conditions) on the boundary X2. 

The approach to deriving a solution to Eq. (1.1) is to discretise the system using 
finite differences. Hence the continuous problem is reduced to a discrete system of 
linear equations to be solved for U. It is common practice in oil reservoir simulation 
to adopt a block centred grid structure whereby the region Q is divided up into 
blocks and the pressure solved for at the centre of each block. 

Given this block centred scheme, the objective has been to develop and apply an 
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MULTIGRID METHODS IN TWO AND THREE DIMENSIONS 291 

efftcient and robust multi-grid algorithm to solve the approximating difference 
equations. By robust is meant a technique which can be successfully applied to a 
wide variety of domains with properties defined according to the second order ten- 
sor K. Thus K may involve sharp discontinuities due, for example, to faults in the 
rock matrix or exhibit large anisotropic variations from one region of the reservoir 
to another. 

Hence the task required the identification of a reliable multi-grid algorithm which 
could quickly and efficiently solve upwards of 700 linear equations involving the 
pressure distribution. Further it was necessary to derive a method for obtaining the 
coarse-grid difference equations from the previous line-grid difference equations 
since only the coefficient matrix is readily available rather than the partial differen- 
tial equation itself. Earlier multi-grid work [4] relied on knowledge of the differen- 
tial equation itself being at hand so that coarse-grid representations of the finite dif- 
ference equations could be formulated by returning to and discretising this equation 
as necessary. 

In response to these demands a multi-grid solution package has been developed 
which can be added to an existing oil reservoir simulator to provide an alternative 
iterative solution procedure. This solution package is particularly suitable for field 
studies involving up to several thousand grid-blocks. 

Similar work has been carried out independently by Behie and Forsyth [3] in 
connection with oil reservoir simulation. In the present work, however, inter- 
polation and the number of multi-grid relaxation sweeps performed at each level of 
coarseness is discussed more generally. More significant is the fact that use is made 
of a full multi-grid algorithm to derive the results reported in this paper rather than 
the cyclic approach adopted in [3]. Comparison between applications to two- and 
three-dimensional examples is restricted in the present study to techniques using 
similar mathematical operators to measure directly the relative success of such 
techniques for use in solving these problems. The work in [3] is mainly concerned 
with comparing multi-grid incorporating plane relaxation and the method of 
incomplete decomposition combined with conjugate gradients for three-dimensional 
problems alone. Moreover, in the current study comparisons are made in terms of 
CPU time on the CRAY-1 rather than numbers of arithmetic operations. 

Section 2 begins with a brief description of the multi-grid strategy used in the 
present work, before going on to discuss the finer mathematical points and details 
of the computational aspects. Application and results of the method to represen- 
tative examples form the material of Section 3 and concluding remarks are presen- 
ted in Section 4. 

2. MULTI-GRID ALGORITHM 

To establish notation and for completeness, a brief description is first given of the 
multi-grid strategy used to solve Eq. (1.1). It is assumed throughout that the time 
dependence of the diffusion equation has been discretised and that one is now con- 
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cerned with an elliptic boundary value problem to be solved at each time step. Rec- 
tangular Cartesian coordinates are used as a basis for spatial discretisation. The 
chief objective is to set up a particular multi-grid algorithm and to then use it to 
solve representative examples in two and three dimensions to determine the relative 
success of the constituent operators used for such items as relaxation and inter- 
polation. 

The algorithm is written with the option of starting iteration with either some 
user-supplied initial approximation to the solution on the finest level (as in [ 31) or 
alternatively at the coarsest level of discretisation with a direct solution method. 
Thus the algorithm incorporates a cyclic option or the full multi-grid procedure 
[6]. Both work in a fixed mode, determined after a number of trial runs on 
representative example problems. The so-called automatic prescription developed 
by Nicolaides [S] within the context of general finite element systems is employed 
to compute the various grid communication operators and coarse level difference 
equations. 

2.1. Brief Outline 

Let G’,..., GM denote a sequence of discretisation grids such that Gk c Gk + ’ with 
Gk a typical member of this grid family. GM represents the finest grid and G’ the 
coarsest. The centres of the grid-blocks referred to in Section 1 are located at the 
nodes of Gk. Suppose the corresponding mesh sizes are h, > . . . > h, where for sim- 
plicity a square uniform grid is assumed; standard coarsening is used to define the 
step-lengths, namely h& = 2h& + i . 

The discretised form of Eq. ( 1 .l ) is expressed as 

L”UM = FM (2.1) 

on GM, the grid on which the problem is presented to the multi-grid package. LM 
represents the finite difference form of the differential operator appearing in 
Eq. (1.1) and UM the exact solution to this system of linear equations. It is assumed 
that iteration is to begin on GM with some initial approximation ~0” to U”; the 
extension to full multi-grid iteration is relatively straightforward. 

The starting point is to write Eq. (2.1) in residual form on GM, that is, 

LMoM=fM (2.2) 

where vM = UM - u”” and f M is the residual function; uM is some approximate 
solution to UM so that vM is interpreted as a correction term. As is well known 
from the multi-grid literature, on a typical grid Gk, it is the correction uk which is 
smoothed by relaxation on the (coarser) auxiliary grids comprising the grid 
hierarchy. That is, those error components with Fourier wavelength of the order of 
hk are most efficiently eliminated by just one or two relaxation sweeps on Gk. 

Having smoothed uk in this way, the problem is then transferred to Gk ~’ 
according to the technique 

Lk-lvk-l=fk-1, (2.3) 
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where the residual term f kP ’ is defined to be given by 

(2.4) 

with I:-’ a suitable residual transfer operator. The usual smoothing procedure is 
again repeated, this time on Gk-i, whereafter uk-i may be interpreted as a coarse- 
grid correction to vk. The initial approximation required to begin relaxation on 
Eq. (2.3) is taken to be the null solution. Having solved the problem on Gk-’ suf- 
ficiently well, the function uk is corrected as 

uk+Uk+z;-,Vk--l (2.5) 

where I$- i denotes interpolation from GkP ’ to Gk. The choice of interpolation and 
residual transfer operator is discussed in the following section. Hence the correction 
uk has been modified according to line (2.5) and should be a better value for the 
next step in the algorithm. This new value is further smoothed by relaxation before 
being used as a correction to vk + ’ on the next liner grid Gk+ ‘. On the other hand if 
k = M, this value is treated as the new approximate solution to the problem on GM 
(Eq. (2.1)) and checked for convergence. 

The above sequence of steps is repeated for all k d M, cycling down to the coar- 
sest level G’ and returning to the finest level G M. Convergence is investigated by 
comparing the L, norm of the residual with some prescribed tolerance E, usually 
s=O.Ol. In the current program of work, the coarsest grid equations are solved 
directly by Gaussian elimination rather than by relaxation. This is relatively cheap 
compared to calculations on other grids due to the reduction in the number of grid 
points at this level of discretisation. 

The algorithm described above is essentially similar to the Correction Scheme 
introduced by Brandt [4]. Computations begin on GM by setting uM = z# rather 
than zero and applying relaxation before transferring the problem to GM- ‘. 
Moreover, it is essential to this scheme that the partial differential equation be 
linear in order that a meaningful equation can be written down for uk. 

Alternatively a$ may be calculated by the package by starting on G’ with a 
direct solution method and interpolating to GM by a process of multi-grid cycling. 
This relieves the user of having to supply a suitable z# and is particularly useful at 
the first time step where a good initial starting value is not always available. Hence 
full multi-grid iteration is applied at the first time step. At subsequent time steps, 
because the pressure distribution is generally a slowly varying function within the 
overall solution strategy, the previous distribution at the last time step can be used 
as an initial starting approximation on the finest grid for the new time step. This is 
referred to as a purely cyclic algorithm. 

The multi-grid strategy outlined above defines the basic framework of the current 
algorithm developed for simulation studies. Some further details are covered in the 
next section. 
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2.2. Mathematical Operators 

Having established the principal features of the multi-grid algorithm, it is now 
appropriate to specify in more detail the choice of the various mathematical 
operators constituting the scheme, such as those concerned with communication 
between grids and smoothing. 

As already mentioned in Section 2.1, at the first time step the basic procedure is 
the full multi-grid approach whereby in order to obtain a good initial approximate 
solution u,M, the algorithm begins on G’ where the system of linear equations is 
solved exactly by a non-iterative scheme. This solution is interpolated to G*, relined 
by a multi-grid cycle and then interpolated to G3. This is repeated until the 
algorithm reaches GM and hence provides a good starting solution at this level. 
Ideally only a few multi-grid sweeps on this approximation are necessary to yield 
an acceptable solution to Eq. (2.1). It is important to note that this technique 
eliminates the extra work which would be incurred by an unfortunate starting 
approximation on GM in the cyclic multi-grid approach [4]. 

In addition, a fixed mode of operation is chosen as opposed to the accom- 
modative mode. That is, instead of inserting switching criteria to determine how 
many relaxation sweeps need to be performed on a given grid Gk (k > 1) before the 
algorithm should switch to another grid, the number of sweeps per grid is 
prescribed in advance. In other words the number is fixed at the outset, taking into 
account the nature of the reservoir problem and the effectiveness of the selected 
relaxation procedure at smoothing the error correction term. Moreover this mode 
of operation thus eliminates the additional code required to implement switching 
criteria and hence a saving on execution time. 

The mathematical operators are described below in turn. 

Relaxation. Three options have been considered: 

(i) point successive relaxation, 
(ii) line successive relaxation, 
(iii) alternating line relaxation. 

The first is straightforward application of Gauss-Seidel iteration where the 
solution at each grid point is updated in turn using the latest values available at 
neighbouring points. Standard ordering is adopted. 

The second option updates a line of point values simultaneously, the direction of 
the line being parallel to either one of the three co-ordinate axes (x, y, or z). This is 
particularly useful for solving problems involving a discontinuity in the coefficient 
terms K of Eq. (1.1) where the line of relaxation should be optimised with respect to 
the line of discontinuity. 

The third choice combines line relaxation of option (ii) in such a way that in 
three dimensions a single sweep is defined to incorporate taking lines parallel to 
first the x axis, then the y axis, and third, the z axis. For problems which exhibit 



MULTIGRID METHODS IN TWO AND THREE DIMENSIONS 295 

TABLE I 

CRAY CPU Time (in seconds) Required to Solve Two-Dimensional Examples by Multi-Grid Iteration’ 

Example GD4 PSR LSR(x) L=(Y) LSW, Y) 

1 0.231 

2 0.231 

3 0.231 

1 2.770 

2 2.773 

3 2.772 

33 x 33 Grid-blocks 

- 0.075 0.110 
(4) (4) 

0.089 0.090 0.099 0.128 
(7) (6) (6) (5) 

- 0.099 0.128 
(6) (5) 

65 x 65 Grid-blocks 

- 0.322 0.502 
(6) (6) 

0.337 0.392 0.439 0.502 
(9) (9) (9) (6) 

- 0.440 0.566 
(9) (7) 

u Number of multi-grid V-cycles given in parentheses. 

TABLE II 

CRAY CPU Time (in seconds) Required to Solve Three-Dimensional Examples by Multi-Grid 
Iteration” 

Example GD4 PSR LSR(x) LWY) LSR(z) LWx, Y, z) 

1 0.573 

2 0.573 

3 0.573 

1 - 

2 - 

3 - 

9 x 9 x 9 Grid-blocks 

- - 0.083 0.126 
(4) (3) 

0.082 0.076 0.083 0.084 0.101 
(5) (4) (4) (4) (2) 
- - - 0.084 0.126 

(4) (3) 

17 x 17 x 17 Grid-blocks 

- - 0.511 0.896 
(5) (4) 

0.475 0.512 0.575 0.517 0.746 
(6) (6) (6) (5) (3) 
- - - 0.517 0.896 

(5) (4) 

0 Number of multi-grid V-cycles given in parentheses. 
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TABLE III 

Average CRAY CPU Time (in seconds) Required for Multi-Grid Preliminary Calculations (MGPC) 
and far Multi-Grid V-Cycles using Point Successive Relaxation MGCY(PSR), Line Successive 

Relaxation MGCY(LSR), and Alternating Line Relaxation MGCY (ALR) 

Two-dimensional examples 

- 
MGPC 

M( XY(PSR) 
M( XY(LSR) 
M( XY(ALR) 

33 x 33 Grid 65 x 65 Grid 

o.oio 0.036 
0.011 0.035 
0.014 0.046 
0.023 0.082 

Three-dimensional examples 

MGPC 
MGCY( PSR) 
MGCY(LSR) 
MGCY(ALR) 

9x9x9 Grid 

0.022 
0.011 
0.013 
0.03 I 

17 x I7 x II Grid 

0.118 
0.061 
0.072 
0.193 

severe anisotropy, alternating line relaxation is particularly appropriate. It can also 
be used to treat efficiently the difficulties associated with discontinuities. 

None of the above relaxation procedures requires an iteration parameter as, for 
example, in the more conventional method of line successive overrelaxation. Each 
of these methods has been consistently applied to problems in two and three dimen- 
sions and a comparison drawn up in Tables I-III. 

Interpolation. This is concerned with transfer of the solution vector from Gk- ’ 
to Gk and in Section 2.1 is denoted by the symbol Zt _ 1. For fine-grid points which 
coincide with coarse-grid points, the identity operator is applied. Otherwise use is 
made of the discretisation equation about the particular fine-grid point labelled 
(i,j, k) for wh ic one wants to interpolate a value h 

(2.6) 

where 1 < q < M. The inclusion of the right-hand side, f 7 j,k, is optional. In the 
derivations to be described in this section it is, however, ignored to retain a higher 
degree of clarity. The multi-grid results reported in Tables I-III have been obtained 
using an interpolation operator which excludes f z,,k. Generally exclusion of this 
right-hand-side function was found to lead to a more effkient interpolation scheme. 
Referring to Fig. 1 there are in three dimensions 3 types of points to which Eq. (2.6) 
is applied. 

The lirst type consists of those points which lie on coarse-grid lines but do not 
coincide with coarse-grid points. For such points Eq. (2.6) is averaged in the two 
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A 

FIG. 1. Diagram to illustrate 3-dimensional interpolation. (0) Fine-grid points; (0) coarse-grid 
points. AB is an example of a coarse-grid line; ABCD is an example of a coarse-grid plane. 

directions perpendicular to the coarse-grid line in question (one direction, if the 
problem is two dimensional). This simply amounts to adding the coefficients of 
Lej,k in the respective direction(s). The result is an equation in the three fine-grid 
points which lie on the coarse-grid line, The two end-points coincide with coarse- 
grid points (by definition of the grid structure) and are therefore known. On sub- 
stitution for these points, the equation is then solved for the unknown (mid-point) 
value. 

The second type of point consists of those on coarse-grid planes but not lying on 
coarse-grid lines. In two dimensions, using the above techniques to obtain values at 
the line-grid points within the plane which coincide with coarse-grid points and 
coarse-grid lines, Eq. (2.6) is solved for the fine-grid value in question. For three- 
dimensional cases, Eq. (2.6) is averaged, employing a similar technique to that 
described above, in the direction perpendicular to the plane. The resulting equation 
(defined in a plane) is then treated as if it were a two-dimensional example. 

The final type of point only occurs in three-dimensional problems and does not 
lie on a coarse-grid plane (rather the centre point of the cube illustrated in Fig. 1). 
However, the 26 neighbouring (nearest) fine-grid point values are all known from 
application of the above averaging processes (8 points coincide with coarse-grid 
points, 12 points lie at the mid-point of coarse-grid lines, 6 points lie at the centre 
of coarse-grid planes) and hence no averaging is needed. Equation (2.6) is solved 
for the centre point value using the 26 previously interpolated values. 

It is noted that because the central difference Eq. (2.6) is used to derive the inter- 
polation formulae, maximum use is made of the information supplied by the dis- 
crete problem. As a further note, this approach to interpolation preserves continuity 
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of K Vu (Eq. (1.1)) which is more accurate physically than ordinary linear inter- 
polation which only preserves continuity of Vu. The scheme adopted here is more 
appropriate to petroleum reservoir calculations which frequently involve jump dis- 
continuities of several orders of magnitude in K. Ordinary linear interpolation is 
only reasonably accurate for problems involving changes in K of no more than a 
single order of magnitude. 

Residual Transfer. This refers to the definition of the operator Zi ~ 1 appearing in 
Eq. (2.4) which is used to transfer the residual from Gk to Gk- ‘. Preliminary 
applications of multi-grid merely used the line-grid values which happened to coin- 
cide with the required coarse-grid points. This technique, sometimes referred to as 
injection, has, however, been shown by Brandt [S] to lead to a 40% degradation 
in the rate of convergence for Neumann problems compared to the corresponding 
Dirichlet problem. Such difficulty is overcome by transferring weighted averages of 
neighbouring residuals instead. Indeed if Lk possesses highly varying coeff%ients, 
the residuals after relaxation are also highly varying so that it becomes necessary to 
use some residual weighting scheme to correctly represent them on Gk- ‘. The 
approach adopted in the present study follows along these lines and is more robust 
and consistent with the interpolation process. 

In fact the residual transfer operator is defined to be the transpose of the inter- 
polation operator. That is, in three dimensions, for example, one writes down the 
interpolation formula for the third type of point discussed in the above section on 
interpolation. Each of the 26 neighbouring point values are weighted in some way, 
namely the interpolation weights. These weight coefficients are transposed with 
respect to opposite points in the discretisation molecule so that the residual at the 
coarse-grid point in question is obtained as a weighted sum of the residuals at the 
26 nearest fine-grid points. 

Coarse-Grid Difference Operator. Given the fine-grid difference operator Lk, the 
interpolation operator (Zi- I) and hence the residual transfer operator (Zf- l)T, then 
following Nicolaides [S], an automatic way to construct the coarse-grid operator is 
by the prescription 

LkP’=(z~-l)TLkz;P,. (2.71 

The action of the product of operators on the right-hand side can be elucidated by 
considering its effect on some coarse-grid function u~,~,~. Upper case subscripts are 
employed to denote coarse-grid values and, in what follows, lower case to denote 
fine-grid values. The interpolation operator (It- 1) transfers from the coarse grid 
Gk-’ to the fine grid Gk whence the tine-grid difference operator Lk acts on each of 
the ui,j,k variables. The residual transfer (or restriction) operator (Zz- 1)r then 
returns the problem to the coarse grid, thus providing the coefficients of each of the 
u,,~,~ comprising the discretisation molecule on Gk- ‘. 

The derivation of the coarse-grid difference operator coefficients is a tedious task 
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and involves lengthy algebraic formalism. Even if Lk is based on a ‘I-point dis- 
cretisation molecule (Spoint in two dimensions), LkP1 will involve 27 points (9 in 
two dimensions). On subsequent coarser grids the LkP1 discretisation molecule will 
again comprise 27 points in three dimensions, 9 in two dimensions. The final form 
of the coarse-grid difference operators is a long and complicated expression, par- 
ticularly in three dimensions. Various cross-checks on the algebra are maintained 
by taking advantage of the symmetry of the problem. A similar approach to the 
coarse-grid difference operator, summarised by Eq. (2.7), has been utilised by 
Alcouffe et al. [l] and Dendy [7] who both confined their studies to two-dimen- 
sional problems and also by Behie and Forsyth [3]. 

2.3. Computational Details 

Having outlined the mathematical operators to be employed, consideration is 
now given to some of the other details of the multi-grid algorithm. The grid 
hierarchy is selected so that for points within the domain of interest, coarse-grid 
lines and planes coincide with line-grid lines and planes. To ensure that the true 
boundary of the problem is included on each grid, a fictitious set of boundary 
points is added outside the domain of interest, the distance of these points from the 
true boundary depending on the step-length of the grid to which the points belong. 
This means that the boundary of each coarse grid is not identical with the boun- 
dary of any other grid. Essentially an aid to programming [7], the foregoing may 
be summarised by saying that if a typical grid point is denoted by (i, j, k), then the 
grid itself is defined to be the set {(i,j,k): 1 diGi,,,, 1 <j<j,, 1 <kdk,} with 
i,, j,, k, the maximum number of points in the x, y, and z directions, respectively. 
The fictitious boundary points are given by the sets, 

{(l,j,k), (i,,j,k): l<j<j,, l<kdk,) 

{(i, l,k), (i,j,,k): l<i<i,, l<kdk,} 

{(i,j, 11, (i,j, k,): 1 bidi,, 1 <j<j,}. 

As remarked earlier, on the coarsest level of discretisation the resultant system of 
difference equations is solved exactly by a direct (Gauss elimination) method. 
Because the coefficient matrix is unchanged, the upper and lower triangular 
matrices of the decomposition are stored for solution at this level during subsequent 
multi-grid cycles. It is recognised that relaxation could be used relatively inexpen- 
sively at this stage but solving directly eliminates the additional work necessary if 
the first approximation used to start the iteration is considerably in error. 

The number of relaxation sweeps to be performed on each grid apart from the 
coarsest is fixed to be one before transfer to another grid, whether up or down the 
grid hierarchy. The only other exception occurs when the algorithm reaches the 
finest grid whereupon two sweeps are carried out. Other combinations of relaxation 
sweeps have been tried such as one sweep when the previous grid was lower down 
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the hierarchy (a coarser grid), two sweeps when the previous grid was higher up in 
the hierarchy (a liner grid) and three sweeps at the finest level. However, the first 
mentioned strategy was found to be generally the most efficient in terms of com- 
putational time for the examples discussed in Section 3. Depending on whether or 
not the prescribed tolerance criterion for solution to the problem has been satisfied 
at the finest level, the algorithm will either terminate or begin another multi-grid 
cycle, cycling through all the coarser levels to the coarsest G’ and returning 
through the same sequence in reverse order to GM. Hence the algorithm utilises the 
so-called V-cycle. Moreover, the algorithm will only move to the grid immediately 
finer or coarser than the current grid; it will never skip a grid. 

On the issue of storage it is necessary to store for each grid Gk, k = I,..., M- 1, 
the interpolation weights and the coefficients of the difference operator Lk. For two- 
dimensional problems, assuming a j-point differencing scheme for L”, this amounts 
to approximately 1On locations, where n is the number of unknowns on GM. In 
addition, storage has been included for the solution itself and the right-hand side 
for each of the computational grids. On the other hand for three-dimensional cases 
with a 7-point discretisation molecule on the finest grid, approximately 12n 
locations are required where again n is the number of unknowns on the finest grid. 
To conserve on the number of arithmetic operations, additional storage is utilised 
to retain a number of auxiliary arrays. This increases the allocation to 
approximately 14n and 17n locations, respectively, for two and three dimensions. It 
is perhaps worth saying at this point that a significant proportion of the solution 
time may be spent in computing the interpolation weights and especially the Lk 
coefficients. This is found to be particularly true for three-dimensional cases and 
will be reflected in the results recorded in Tables I-III. 

The multi-grid algorithm described in this section has been applied to a number 
of example problems, selected to include the effects of severe anisotropy and sharp 
discontinuity in the coefficient terms of K, typical of those encountered in petroleum 
reservoir simulation studies, It is these test problems that are discussed in the 
following section, 

3. REPRESENTATIVE EXAMPLES 

In reservoir simulation, one is frequently concerned with solving a partial dif- 
ferential equation which describes a time evolution process. As already stated in 
Section 1, the usual strategy is to consider the problem at successive time steps so 
that it becomes necessary to solve a boundary value problem at each step. The 
current implementation of the multi-grid package is within a simulator which 
assumes incompressible flow. Various representative examples have been considered 
in two and three dimensions which involve anisotropic and discontinuous 
heterogeneities and allow for injector and producer wells via a relatively simple 
model. 
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Returning to the general Eq. (1.1 ), this is expressed in rectangular Cartesian co- 
ordinates in the form 

au a iK,-+- ax ay 
KY $2 K d", F, 

ay aZ 2 az (3.1) 

where F = F(x, y, z) and K, = K,Jx, y, z). The analogous equation in two dimen- 
sions is defined in the x-y plane. In writing down Eq. (3.1), the common 
assumption is made that the co-ordinate axes of the reference system are aligned 
along the principal axes of the tensor K. Different functional forms are considered 
for (K,, K,, Kz) and the right-hand-side function F. 

Applying second-order central differences to reduce Eq. (3.1) to a discrete system 
on the finest grid GM, one readily obtains a matrix system of linear equations 
equivalent to Eq. (2.1). In the notation of oil reservoir simulation, the trans- 
missibility terms are defined to be the K,. The right-hand-side function provides the 
possibility of including source and sink terms at appropriate points of interest. 

The finite difference equations associated with each representative example are 
solved on the CRAY-1 and a comparison provided in Tables I-III of the times 
taken with different smoothing operators; vectorised code is employed as much as 
possible. The time required for solution by Gaussian elimination with 04 ordering 
[9] is also included. This latter solution method is a variant of Gaussian 
elimination particularly suited to handling the systems of linear algebraic equations 
arising from discretisation of equations such as Eq. (3.1). The key idea is to order 
the algebraic equations so that the coefficient matrix assumes a special structure. By 
performing forward elimination on the lower half of the coefficient matrix ordered 
in this fashion it is possible to decouple the unknowns, each set having half the 
number of elements of the original set. In this way, one is only required to solve a 
matrix equation of just half the dimension of the original matrix equation and to 
derive the remaining unknowns by a simple back substitution. Further details on 
the scheme can be found in Refs. [2, 93. 

Gaussian elimination with 04 ordering represents one of the most widely used 
direct methods of solution and for this reason is chosen for comparison with the 
multi-grid method. Use of the scheme is, however, governed to a large extent by the 
bandwidth of the overall coefficient matrix, so that for larger dimensional matrices 
the amount of computer storage required may prohibit use of the technique. One 
could also compare with other iterative methods apart from multi-grid. However, 
these are generally sensitive to the initial approximate solution and may converge 
quickly if this choice is close to the exact solution or, on the other hand, grind away 
for some time if the approximation differs considerably from the exact result. Full 
multi-grid iteration as used in the present study, however, determines its own good 
initial starting solution right at the beginning by solving the reduced system of 
equations at the coarsest level and interpolating this solution to the finest grid using 
multi-grid cycling. Iteration is terminated when the L2 norm of the residuals on GM 
becomes less than E, where E = 0.01. 
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It is important to note that in this application of multi-grid, the full multi-grid 
algorithm is employed to derive the results obtained in Tables I-III. This is in con- 
trast to the work of Behie and Forsyth [3] which starts with an initial guess of zero 
on the finest grid rather than a direct solution approach at the coarsest level. 
Moreover, it should be noted that in the present work, specific CPU times are 
tabulated for a given machine which provides for a more readily understood com- 
parison with other methods, than by counting the number of arithmetic operations. 

The domain of the representative examples is taken to be square in two dimen- 
sions and cubic in three dimensions; the code, however, is not restricted to these 
configurations and can be readily applied to rectangular regions with any number 
of grid points along each coordinate axis. Both types of domain are divided up into 
block-centred grids (a single layer of grid-blocks in two dimensions) with u to be 
calculated at the centre of each block. K denotes the transmissibility between 
adjacent grid-blocks. The examples have been selected on the basis of variation in K 
and three cases studied on each of the two domains. The two-dimensional examples 
are discussed first. 

3.1. Two-Dimensional Examples 

As remarked earlier the domain is set in the x-y plane; both 33 x 33 grid-block 
(N = 33) and 65 x 65 grid-block (N= 65) configurations are considered in turn to 
define the finest level of discretisation. The step-length is taken to be scaled to unity 
in both co-ordinate directions at this level. No-flow (Neumann) conditions are 
imposed along all boundaries. A source with strength proportional to N is located 
in the corner grid-block labelled (1, 1) and a sink of similar strength in the opposite 
corner (N, N). Within the context of reservoir engineering these correspond to a 
simple description of injection and production wells, respectively. 

The degree of continuity and isotropy of the medium is governed by K. Below are 
listed the properties of K for each of the three problems. 

EXAMPLE 1. Continuous and anisotropic everywhere with K, = 1 and K-P = lo2 
for N=33 and N=65. 

EXAMPLE 2. Discontinuous and isotropic such that for 

i,<iiii, and j,<j<j,, K,= K,= IV3 

and elsewhere K, = K, = 1. 

For N= 33: i, = j, = 12 and i2 = j, = 22. 

For N= 65: i,=j,=22andi2=j,=44. 

EXAMPLE 3. Discontinuous and anisotropic such that K, = 1 everywhere and 
K.” = 1 except for j, < j < j2 where K.,, = 10’ and for j, d j < j, where K.” = 10. 
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For N= 33: j, = 16, jz = 21, j, = 22, j, = 27. 

For N= 65: j, = 30, j, = 41, j, = 42, j, = 53. 

Using multi-grid, the number of auxiliary coarser meshes set up in addition to 
the finest grid was 4 for the examples with N = 33 and 5 for those with N = 65. 

All problems were solved on a CRAY-1 machine. The amount of CPU time in 
seconds needed to obtain a convergent solution is recorded in Table I. Apart from 
the left-hand column headed GD4, which lists the time required to solve by 
Gaussian elimination preceded by 04 ordering, the table provides a summary of 
the times taken when each of the smoothing procedures discussed in Section 2.2 is 
employed within the multi-grid scheme. Hence the column under PSR denotes 
results obtained using point successive relaxation; LSR(cr) corresponds to use of 
line successive relaxation by lines parallel to the direction(s) indicated by a. Results 
in the column furthest to the right were derived from using alternating line suc- 
cessive relaxation. For each multi-grid run, the time needed to perform the 
preliminary calculations to set up the various interpolation weights and coarse-grid 
difference operators is also included in the figure given. This set-up time is also 
tabulated separately in Table III together with the time required to perform a com- 
plete multi-grid V-cycle using the respective smoothing operator. The number of 
complete multi-grid cycles used by the algorithm to determine the solution is 
quoted in parentheses below each of the entries in Table I. A dash indicates that an 
excess of multi-grid cycles (greater than IO) was needed to achieve convergence. 

From Table I it is immediately observed that in each case, solution of these 
problems using multi-grid iteration is faster than using the non-iterative approach. 
Indeed for such problems which involve 1089 and 4225 unknowns at the finest level 
of discretisation, one would expect that an iterative method should prove superior 
over a direct elimination procedure. This is true not only in terms of computational 
time but also concerning storage demanded by the algorithm; the amount of store 
needed by the Gauss 04 algorithm becomes prohibitively excessive for larger 
domain problems due to the increased size of the bandwidth. 

The speed of convergence within the multi-grid scheme depends crucially on the 
choice of relaxation. In the case of anisotropic problems it is clearly desirable to 
choose the optimum direction for relaxation, namely the direction in which Km is 
greatest. A similar observation is well known when using line successive over- 
relaxation (LSOR) to solve the finite difference equations at the finest level of dis- 
cretisation alone, [2]. On the other hand, Example 2 which includes discontinuity 
but no anisotropy converges quickly for each choice of relaxation, a result which 
could be anticipated from the symmetry of the problem. 

Generally, given the optimum relaxation method, it is seen from Table I that less 
than 0.1 s are needed to solve examples on a 33 x 33 grid and 0.34.4 s to solve 
problems on a 65 x 65 grid configuration. Use of alternating line relaxation, though 
requiring fewer relaxation sweeps, is, however, not to be recommended for these 
examples since for each comparison, more time was necessary to achieve similar 
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accuracy to using single line relaxation or indeed point successive relaxation in 
some cases. On the other hand, if time is not of prime importance, smoothing by 
alternating line relaxation is noted to produce a convergent solution in all cases. 

3.2. Three-Dimensional Examples 

As above in Section 3.1 two levels of finest discretisation are considered, the first 
comprising 9 x 9 x 9 grid-blocks (N = 9) and the second 17 x 17 x 17 grid-blocks 
(N= 17), each grid-block being scaled so as to have edges of length unity. No-flow 
(Neumann) conditions are imposed over all boundaries of the domain. Source and 
sink terms consist of a source in the grid-blocks labelled (1, 1, k) with strength 
proportional to N2 and a sink diagonally opposite in the grid-blocks with index co- 
ordinates (N, N, k) of similar strength, k = 1,2,..., N. In oil reservoir terminology, 
taking the z axis to be in the vertical direction, this corresponds to simple modelling 
of an injection and a production well completed in all layers of the reservoir. 

These examples are essentially three-dimensional geometric analogues of the two- 
dimensional problems. 

EXAMPLE 1. Continuous and anisotropic everywhere with K, = 1, KY = 10 and 
Kz= 10-l for N=9 and N= 17. 

EXAMPLE 2. Discontinuous and isotropic such that for 

i,<idi,, j,<j<j,, and k,dk<k,, Kx=K,=Kz=lO-l 

and elsewhere K, = KY = Kz = 1. 

For N=9: i,=j,=k,=4andi,=j,=k,=6. 

For N= 17: i,=j,=k,=7 and i,=j,=k2=11. 

EXAMPLE 3. Discontinuous and anisotropic such that K, = KY = 1 everywhere 
and K= = 1 except for k, <k <k, where K, = lo2 and for k, 6 k d k, where K, = 10. 

For N = 9: k, = 5, k, = 5, k, = 6, k, = 7. 

For N= 17: k,=9, k,=ll, k,=12, k,=14. 

Apart from the finest grid on which the problems.are discretised by the simulator, 
multi-grid solution of these examples used 2 additional coarser grids when N = 9 
and 3 additional grids when N = 17. 

Again all three-dimensional examples were solved on a CRAY-1 machine. The 
associated CPU times are tabulated in Table II where the notation follows that 
adopted in Table I. A full description of the symbols and headings has already been 
given in Section 3.1. The times needed to perform the preliminary calculations for 
setting up the grid transfer operators and the coarse-grid difference equations are 
presented in Table III. Also included in this table are the respective times for perfor- 



MULTIGRID METHODS IN TWO AND THREE DIMENSIONS 305 

ming complete multi-grid V-cycles starting at the finest grid and cycling down grid 
by grid to the coarsest level before returning similarly to the finest level. In the case 
of Gaussian elimination with 04 ordering, the routine employed in this study was 
unable to handle the greater bandwidth encountered on the larger (17 x 17 x 17) 
grid configuration. Otherwise a dash in the columns referring to multi-grid 
calculations indicates that more than 10 multi-grid iterations (complete cycles) were 
required to satisfy the convergence criterion. 

Inspection of results in Table II reveals a similar behaviour to those reported for 
the two-dimensional runs in Table I. It is anisotropy which causes the greater dif- 
ficulty compared to discontinuity; Example 2 which involves only discontinuity is 
readily amenable to solution using any of the smoothing procedures considered. On 
the other hand a degree of sensitivity is demonstrated by Examples 1 and 3, which 
both include anisotropic effects, to the choice of relaxation procedure. Again for 
these problems, the line of relaxation should be taken in the direction of greatest K, 
to achieve maximum efficiency. 

On comparing with the two-dimensional results, the increased bandwidth of the 
present coefficient matrices causes a degradation in execution time as far as the 
Gauss 04 method is concerned. Multi-grid, however, is able to solve the examples 
on the 9 x 9 x 9 grid (729 points) in a comparatively short time. Indeed, for grids 
involving in the region of 700 unknowns in the three-dimensional geometry of this 
study, multi-grid is able to derive a convergent solution in less than 0.1 s. Turning 
to the larger grid, possessing 4913 unknowns, multi-grid iteration is able to solve 
the problems in less than 0.5 set using the optimum relaxation technique. Solution 
of the three-dimensional problem is generally more time consuming than the two- 
dimensional case with a similar number of unknowns. This is due in part to the 
increase in the amount of preliminary computations (cf. Table III) and also the 
more complicated nature of the 3-D operators, especially the discretisation operator 
discussed in Section 2.2. 

As for the two-dimensional cases, alternating line relaxation is able in each exam- 
ple to produce a convergent solution using less than the current upper limit of 10 
iterations. However, the scheme is overall more demanding on time compared to 
the multi-grid algorithm incorporating the most efficient smoother available. 

4. CONCLUDING REMARKS 

A state-of-the-art multi-grid algorithm capable of solving elliptic partial differen- 
tial equations in two and three dimensions has been developed and applied to a 
number of example problems based on situations occurring in oil reservoir 
simulation. These calculations have been selected to test the robustness of this par- 
ticular choice of algorithm for handling problems exhibiting strong anisotropic 
properties and sharp jump discontinuities in the coefficient function K of the dif- 
ferential equation, Eq. (1.1). Moreover the overall aim of this paper has been to 
apply consistently a multi-grid algorithm employing specific relaxation and inter- 
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polation procedures to problems in two and three dimensions and to examine the 
relative success of such an algorithm in dealing with these problems. 

Given a convergent relaxation procedure which has the appropriate smoothing 
property, multi-grid iteration is extremely fast at producing a solution to the 
majority of the representative examples considered in Section 3. The importance of 
first identifying the nature of the problem in question and then matching to it a 
suitable multi-grid sequence of operations is highlighted by those examples where 
the use of some relaxation procedures failed to readily provide a convergent 
solution. 

Within the context of this study, the automatic prescription offers a robust and 
efficient multi-grid method for solving typical reservoir simulation problems. For 
anisotropic cases, the choice of relaxation scheme has a decisive bearing on 
efficiency and speed. The algorithm is particularly effective in two dimensions. In 
three dimensions, the gain in speed is partly off-set by the increase in computational 
time needed to set up the multi-level operators on each grid and by the degree of 
anisotropy and discontinuity possessed by the problems. Moreover, further work 
has shown that performance on two-dimensional problems is comparatively better 
than on three-dimensional examples and that discontinuities take on more 
significance in three dimensions by demanding additional computing time. Overall 
it has been observed from a comparison between 2-D and 3-D problems that a 
general trend is revealed whereby the algorithm used in this work is better suited to 
solving discontinuous and anisotropic problems in the plane rather than in space. It 
is believed, however, that further investigation and development of the three-dimen- 
sional interpolation and especially the relaxation procedure should remedy this 
situation. 
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